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Spatial Galerkin projection transfers fields between different meshes. In the area of finite element analysis of electromagnetic

fields, it provides great convenience for remeshing, multi-physics, domain decomposition methods, etc. In this paper, a space-time
Galerkin projection is developed in order to transfer fields between different spatial and temporal discretization bases.

Index Terms—Finite element methods, Galerkin method, Modeling, Field projection.

I. INTRODUCTION

The coupling of two finite element analyses (FEA) arises in
various applications. In the case of multi-physics modeling, for
instance, such coupling allows the use of different computa-
tion packages for different subproblems (e.g. electromagnetic,
thermal or mechanical). Since FEA packages tend to use an
optimal discretization basis (spatial & temporal) for specific
problems, the communication between different analyses be-
comes a challenge to be tackled.

Although interpolation enjoys the advantages of simplicity
and high computational efficiency, using it as the commu-
nication tool suffers from low precision of transferred field
distribution. Galerkin projection draws greater interest for high-
precision coupling, in particular for spatial mesh-to-mesh field
transfer [1], [2], [3], [4].

In this paper, we develop a mesh-to-mesh Galerkin projec-
tion method which also transfers fields between different time-
discretization bases. The proposed method is applied to the
magneto-mechanical modeling of an electric machine.

II. SPACE-TIME PROJECTION

For illustration, in the following, we consider the projection
of magnetic field H. The proposed projection methods can,
however, be generalized to all electromagnetic fields.

We denote by Hs the magnetic field given on the source
mesh and by Ht the field to be calculated on the target
mesh. They are also discretized using different time steps.
Here Hs is supposed to be calculated using H-conforming
formulation (e.g. the formulation based on scalar potential Ω).
The spatial and temporal variation Hs(x, t) is thus known
(using interpolation) on the domain D during the time T .

We define the space-time error norm between Ht and Hs:

εH =

∫
T

∫
D

µ

2
‖Ht −Hs‖2 (1)

where µ is the magnetic permeability and varies depending
on materials. It is used here to energetically weight the error
norm [5]. For simplicity, µ is linear and time-independent in
this paper.

Since Ht ∈ H(curl), edge elements offer the most suitable
spatial discretization base. In terms of temporal discretization,
we use a linear interpolation function. Thus Ht writes:

Ht(x, t) =
∑

i=1..M, j=1..N

we
i (x)wt

j(t)Xij , (2)

with M the number of edges of the target mesh, N the number
of time steps of the target temporal base, we

i (x) the (spatial)
interpolation function associated to the i-th edge, wt

j(t) the
(temporal) interpolation function associated to the j-th time
step and Xij the degrees of freedom.

The objective of the Galerkin projection is to find the target
field Ht(x, t), which minimizes the defined space-time error
norm (1). Thus the derivatives with respect to all degrees of
freedom are zero: ∀i ∈ {1..M} ,∀j ∈ {1..N}
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It can be written as matrix equation:

[A][X][B] = [C] , (7)

where [X] is the M × N matrix of degrees of freedom,
Aij =

∫
D
µwe

i · we
j is the M ×M matrix of inner products

of edge functions, Bij =
∫
T
wt

iw
t
j is the N × N matrix

of inner products of temporal interpolation functions, and
Cij =

∫
T

∫
D
µwe

iw
t
j · Hs is the M × N matrix of source

terms.
Using the Kronecker product of the matrices [B]T and [A],

we can transform the matrix equation (7) into a linear system:

([B]T ⊗ [A])[vecX] = [vecC] , (8)

where [vecX] and [vecC] are the ordered stock of columns
of matrix [A] and [C] respectively. This linear system is then
solved using iterative methods (e.g. the conjugate gradient
method).



III. APPLICATION

Let us consider the magnetic-mechanical-coupled modeling
of an electric machine. For electric machines rotating at low
speeds (e.g., less than 5000rpm), the main source of vibrations
and acoustic noise is usually electromagnetic fields.

We can chain magnetic and mechanical FEA in order to
simulate such vibrations. In the magnetic study, we rotate
the rotor to different positions and calculate the distribution
of magnetic fields. In the mechanical study, we calculate
vibrations of the stator and the housing structure using the
resulting magnetic forces.

In this case, a reasonable mechanical mesh is often different
from the magnetic one, given that the studied geometry is
different. Here the meshes used are illustrated in Fig. 1. For
simplicity, only the stator is considered in the mechanical
model.

The projection method presented in the previous section,
is thus used to transfer information between the magnetic
and mechanical studies. In particular, the magnetic problem
is solved using an H-conforming formation, and the obtained
magnetic field H is projected onto the mechanical mesh.

Regarding temporal discretization, for the magnetic prob-
lem, a fixed-step technique is used to take into account the
movement of the rotor. 828 steps are used in the magnetic
computation..

The obtained magnetic field H is then projected to the
mechanical mesh (with edge elements) using (8). Also, the total
number of time steps is doubled to 1656 in order to investigate
high-frequency components of forces. Once the magnetic field
H is projected to the mechanical mesh, the magnetic forces
can be obtained by applying the virtual work principle. Fig. 2
shows result at the first time step (t = 0s).

Taking one node on the stator tooth as example, Fig. 3
presents the temporal evaluation of nodal force during one
revolution of the rotor. Since the studied motor has 12 poles,
the nodal force has 12 peaks in one period.

(a) (b)

Fig. 1. Meshes used in the magnetic and mechanical models.
(a) magnetic mesh: 71k prisms × 1 layer. (b) mechanical mesh:
12k hexahedrons × 4 layers.

Fig. 2. Obtained nodal forces (N ) on the stator teeth (mechan-
ical mesh), calculated from the space-time projected H field
at t = 0s.
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Fig. 3. Temporal evaluation of a nodal force (N ) at the center
of a stator tooth (mechanical mesh, node # 4899), calculated
from the space-time projected H field.

IV. CONCLUSION

In this paper, we extend a spatial Galerkin projection into
the time domain. The proposed projection methods allow the
transfer of field distribution between different meshes, and also
different temporal discretization bases.
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